arXiv:2101.00732v1 [cs.LG] 4 Jan 2021

GENERALIZED LATENCY PERFORMANCE
ESTIMATION FOR ONCE-FOR-ALL
NEURAL ARCHITECTURE SEARCH

Muhtadyuzzaman Syed & Arvind Akpuram Srinivasan
Georgia Institute of Technology

Atlanta, GA 30332, USA
{msyed32,asrinivasan87}@gatech.edu

ABSTRACT

Neural Architecture Search (NAS) has enabled the possibility of automated ma-
chine learning by streamlining the manual development of deep neural network
architectures defining a search space, search strategy, and performance estima-
tion strategy. To solve the need for multi-platform deployment of Convolutional
Neural Network (CNN) models, Once-For-All (OFA) proposed to decouple Train-
ing and Search to deliver a one-shot model of sub-networks that are constrained
to various accuracy-latency trade-offs. We find that the performance estimation
strategy for OFA’s search severely lacks generalizability of different hardware
deployment platforms due to single-hardware latency lookup tables that require
significant amount of time and manual effort to build beforehand. In this work,
we demonstrate the framework for building latency predictors for neural network
architectures to address the need for heterogeneous hardware support and reduce
the overhead of lookup tables altogether. We introduce two generalizability strate-
gies which include fine-tuning using a base model trained on a specific hardware
and NAS search space, and GPU-generalization which trains a model on GPU
hardware parameters such as Number of Cores, RAM Size, and Memory Band-
width. With this, we provide a family of latency prediction models that achieve
over 50% lower RMSE loss as compared to with ProxylessNAS. We also show
that the use of these latency predictors match the NAS performance of the lookup
table baseline approach if not exceeding it in certain cases.

1 INTRODUCTION

Model deployment of Convolutional Neural Networks (CNN) is an emerging topic, particularly
for edge devices. As applications for image processing and object recognition tasks continue to
grow, the need for tailored models with the highest possible level of accuracy is paramount for near
human-like performance. Diverse sets of hardware platforms have different resource constraints
defining unique latency and workload requirements. Traditionally for each deployment scenario,
Neural Network Architectures are manually designed and trained to meet deployment constraints
such as latency. This becomes computationally prohibitive with respect to design time, expertise,
GPU hours, and CO2 emission as the number of deployment scenarios scale exponentially.

Once-For-All (OFA) (Cai et al., 2020 [1]) proposed to streamline the model deployment process
by introducing the Once-For-All network that contains sub-networks with unique accuracy-latency
trade-offs to serve 10'” deployment scenarios at once. OFA achieves this by decoupling Training
and Neural Architecture Search (NAS), which reduced training cost from a per scenario basis to a
one time cost of 1200 GPU hours.

Focusing on OFA’s search paradigm, NAS can be categorized into three dimensions: search space,
search strategy, and performance estimation strategy (Elsken et al., 2019 [2]). OFA defines the
search space of CNN child architectures with varying depth, width, kernel size, and image reso-
lution presenting over 10 possible model configurations for deployment. Compound Once-For-
All (CompOFA) (Work-In-Progress) establishes a several orders of magnitude smaller search space

of 243 model configurations and eliminates the need for training sub-optimal models below the
accuracy-latency Pareto frontier, establishing half the cost of GPU hours, dollars, and CO5 emis-
sion for training.

Performance Estimation is the process of estimating predictive performance of architectures found
by NAS during search. For example, with a search strategy defined as an evolutionary search al-
gorithm, performance estimation serves as a feedback mechanism for NAS to indicate whether the
child model found is optimal without the need for retraining. OFA defines their performance es-
timation strategy as individual latency lookup tables specified for a single hardware deployment
platform. Each lookup table contains a manual enumeration of every possible layer in a CNN archi-
tecture and its corresponding latency estimation on that hardware platform. The latency estimation
for each layer is calculated by measuring over some number of iterations and simply taking the
mean. Further details of how the lookup tables are created are not shared by the original authors
and leads to inefficiency in latency guided NAS for heterogeneous hardware as manual calculation
of latency are required for hardware which do not have look-up tables.

In this work, we focus primarily on developing a generalized performance estimation strategy to
efficiently perform latency guided NAS. We have developed our work on top of OFA and CompOFA
in order to serve a working proof of concept that machine learning latency prediction models can
be used generally for latency-guided NAS applications.

We achieve the following goals in this work:

(1) Develop latency predictors for CNN architectures with SOTA performance

(2) Enable heterogeneous hardware support through 2 generalization strategies: fine-tuning and
GPU-generalization

(3) Reduce the manual overhead of creating lookup tables in the baseline approach proposed by OFA

2 RELATED WORK

Model-based performance estimation for NAS: To reduce the computation and time taken to
evaluate the performance of a model during search, performance estimators have been employed. In
Cai et al. [1], an accuracy predictor is used for predicting the accuracy of a given model. A lookup
table is used for calculating the latency of a model and contains the latencies for every possible layer
in a CNN architecture. The total latency is found by simply taking the sum total of all individual
layers. In Cai and Han. [3], the latency of a model is predicted using a latency predictor that takes
into account layer operation, depth, and width among other parameters to estimate the latency.

GPU performance estimation: GPU performance estimation focuses on calculating the perfor-
mance and/or energy consumption of a GPU hardware based its configuration. (Note that this is not
in the context of NAS for a performance estimation strategy.) GPU performance can be estimated
from equations that have memory frequency and number of cores as variables (Figuera and Issa[6],
Wang and Chu[4]). Paul et al.[5] has shown that performance estimation can be dependent on the
memory size and memory hierarchy that is present in a GPU.

3 MOTIVATION

3.1 LATENCY ESTIMATION FOR NAS

For latency performance estimation, there are two methods used in the NAS literature. One is to
follow a lookup table approach used by OFA and the second is to train a latency predictor used by
ProxylessNAS. Unfortunately, ProxylessNAS has not released their code base or any information
about their latency predictors, therefore we can only rely on their statements on how they perform.
We additionally do not know how they are implemented or how the performance fares across dif-
ferent types of hardware. In this work, we create a family of latency predictors with a focus on
hardware generalization and examine their performance in a variety of deployment scenarios.

i Intel_Xeon_CPU

RTX 2080 Ti GPU

Vectorization & One Hot Encoding

Tesla P40 GPU

I Training H Validation ‘ !

OFA Search Space

: Hardware-Specific Modeling | Tesla_P40_GPU | IRTXZOBO TiGPU l i
s ; ; Note10 ;

RTX 2080 Ti GPU Fine-Tuning Architecture

Tesla P40 GPU

H i Inference Time Analysis
1 Fixed Kernel CompOFA Search Space) H | :
| E—— Fine-Tuning Evaluation """"""""""""""""""""""""""""""

i Generalized GPU model I Note10_OFA ||N01e1o_E|asuccomp0FA|§

Hardware Generalization

Training Dataset Size

Fine-Tuning Dataset Size Application

‘ RTX 2080 Ti GPU

TesIaPAOGPU‘ : I RTX_OFA H RTX_ElasticCompOFA I

Elastic Kerel CompOFA Search Spa Neural Architecture Search

‘ RTX 2080 TiGPU | |Tesla P40 GPU RMSE Loss
Generalized GPU Dataset Experiments
Dataset Creation Model Creation !

Figure 1: High level design of latency prediction model development consisting of Dataset Creation,
Model Creation, and Application.

3.2 GENERALIZED LATENCY ESTIMATION ACROSS HARDWARE

In the case of both OFA and ProxylessNAS, the estimation strategies must be applied for each
hardware individually. The main advantage of using a latency prediction model is that it could be
tailored for heterogeneous hardware support by simply making modifications on the data it is trained
on. This ultimately helps to reduce the manual overhead of creating lookup tables for each hardware
scenario. We aim to offer the framework for developing hardware generalized prediction models for
the purposes of accelerating research in latency-guided NAS applications.

3.2.1 CAPTURING THE EFFECT OF MODEL ARCHITECTURE ON LATENCY

The latency of a model is based on the model architecture and the hardware parameters. Since
the model architecture will remain the same across different hardware, the underlying effect of the
model architecture will allow for some level of generalization of a model across hardware.

Additionally, given a set of architectures, their ordering in terms of latency may in certain cases
remain the same across different types of hardware. This could be the case when looking at differ-
ent architectures in the OFA search space and therefore allows for the underlying ordinality to be
captured for generalization (eg: Irrespective of the hardware in use, increasing the depth of a model
will increase the latency of the model).

It would be remiss to not mention that this will not always be the case. With the advent of highly
specialized hardware that is created with particular configurations in mind, this assumption will
break (eg: CNN specialized hardware may have lower latency for CNN models when compared to
similarly large LSTM models, which need not be the case if a general GPU is used). This is not
likely to be the case in OFA, because the models while differing in terms of depth, width and kernel
size are all similar in terms of layer operations (eg: convolution layer).

3.2.2 PARAMETRIZATION OF HARDWARE

The effect of a hardware on the latency is the result of the configuration of the hardware in use. If
the hardware can be parametrized in terms of its configuration, we can capture the underlying effect
of a configuration on the latency of a model, thereby not assuming it simply as a black box and
therefore not necessitating an individual estimator for each new hardware in question.

4 LATENCY PERFORMANCE ESTIMATION

The high level design of this work can be visualized in Figure [T} which consists of three stages:
Dataset Creation, Model Creation, and Application. In Dataset Creation, we generate 10 datasets
of (child_architecture, latency) pairs in various combinations of hardware deployment platforms and
NAS search spaces. In Model Creation, we develop 2 groups of predictors: hardware-specific mod-
els and hardware-generalized models. We use techniques such as vectorization, One Hot Encoding,
Hyperparameter Tuning, Fine-Tuning, and Model Evaluation. In Application, we assess the usage
of the latency predictors in an existing NAS application to see how it performs compared to baseline
approaches.

4.1 DATASET CREATION

To develop the generalized latency predictors, we generate 8 datasets of (child_architecture, latency)
pairs for the purpose of model training and testing. We also generate 2 additional datasets for GPU
generalization.

4.1.1 ARCHITECTURE SEARCH SPACES

As designed by OFA, we consider search spaces covering 4 dimensions of CNN architectures which
include kernel size, depth, width, and image resolution. With these parameters, each search space
defines the total number of different child architectures that are possible. For example, for an OFA
search space defining parameter elasticity with 3 layers, 3 channels, 3 kernel sizes, and an image
size with a unit size of 5, the total number of model configurations is (3 x 3)2 + (3 x 3)% + (3 x 3)*)°
=10 models. Another search space we consider in our latency predictor evaluation is CompOFA.
The CompOFA search space aims to shrink the design space of the model architectures in order to
avoid considering sub-optimal models along the accuracy-latency curve. This reduces GPU hours
and CO2 emission during the Training stage, and proves to generate models that perform on-par with
models from OFA. By incorporating a Coupling Heuristic, CompOFA defines two possible search
spaces: Fixed kernel and Elastic kernel. Fixed kernel creates a simplified space with a kernel size of
either 3 or 5 in each block, generating 3° = 243 models. For Elastic kernel, kernel sizes of {3,5,7}
are considered for every layer, generating (32 + 3% + 3%) = 10'° models. We refer to these search
spaces as "OFA”, “’Fixed-Kernel CompOFA”, and “Elastic-Kernel CompOFA”.

4.1.2 LATENCY ON HARDWARE PLATFORMS

We consider multiple hardware platforms for the aim of hardware generalization. These platforms
include the Samsung Galaxy Note 10, Intel Xeon CPU, RTX 2080 Ti GPU, and Tesla P40 GPU.
Considering a child architecture from a search space as defined previously, each model will con-
tain a different latency measurement on each hardware. For example, we can consider a sample
architecture from Fixed-Kernel CompOFA as the following:

{’ks’: [3,3,3,3,5,5,5,5,3,3,3,3,3,3,3,3,5,5,5, 3],
e’: [6,6,6,6,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6, 6],
d’: [4, 3,3, 4,4],

r’: [176]}

When performing latency measurement on the RTX 2080 Ti GPU, this model architecture has a
latency of 18.66242886 milliseconds (ms). For the same model measured on the Intel Xeon CPU,
the latency is 1001.928711 ms. This variance makes sense due to the differences in computation
power between a CPU and GPU during model training and inference. For each hardware platform,
we create datasets for each search space. Two more datasets were created for training a latency
predictor that is generalized over GPUs. To account for GPU characteristics, additional heuristics
were added such as Number of Cores, RAM size, and Memory Bandwidth. More details on why
these specific parameters were chosen is explained in Section 4.5.

The datasets used for training the latency predictors were created by randomly sampling child ar-
chitectures found in each respective search space [OFA, Fixed-Kernel-CompOFA, Elastic-Kernel-
CompOFA]. For each child architecture sampled, latency measurement is performed and recorded.
Each datapoint is assumed to be independently and identically distributed (iid) offering a wide

Search Possible Values

parameters
Kernel Size (3,5, 7)
Expansion ratio (3,4, 6)
Depth (2,3,4)
Input 112 x 112 -
Resolution 240x240

Figure 2: Search space of OFA

enough variety of model possibilities that can be used for training. Each dataset was generated
with 10,000 datapoints of (child_architecture, latency) pairs where 70% is used training, 15% for
testing, and 15% for validation during model creation.

A limitation to note is that the Fixed-CompOFA search space does limit the number of model con-
figurations possible to only 243. For the purposes of training the latency predictors, we want to
produce as many unique model configurations as possible so our predictors can learn generally over
various architectures. From our experiments, limiting to the Fixed-Kernel-CompOFA search space
led to overfitting which does not aid in accurate latency prediction in the wild. Hence, we use models
trained in OFA to honestly evaluate performance in our experiments.

4.2 MODEL CREATION
4.2.1 VECTORIZATION

The model configurations in the OFA search space need to be parametrized and vectorized so that it
can be used as an input for the latency predictors. We have chosen to follow the vectorization strategy
that OFA used for their accuracy predictor. The accuracy predictor has a Root Mean Squared Error
(RMSE) loss of 0.21%, and is hence able to predict the accuracy simply given the architecture.
Since the latency estimation is also based on the architecture of the model, the assumption is that
this vectorization process will work for a latency predictor as well. In the case of a generalized
latency predictor, where the hardware configuration is also considered, the input vector will have
some modifications, as explained in section 4.3.

The OFA search space is characterized by the kernel size of a layer (3 possible values), the expansion
ratio of a layer (3 possible values), the depth of a block (3 possible values), and the input image
resolution (refer Figure [2). There are 5 blocks in every model and the maximum possible depth
value is 4, therefore the maximum number of layers is 20. The vectorization strategy is as follows:

1. The kernel size (ks) and expansion ratio (e) of each layer is one-hot encoded. (If the layer
does not exist, because the depth is less than 4, then its corresponding encoding is (0,0,0))

2. The encoding for ks and e are concatenated to form two vectors of length 60 each (20
(maximum possible layers) x 3 (length of each encoding))

3. The possible input image resolutions (r) are between 112 x 112 and 240 x 240. The r is
encoded into a one-hot vector of length 8. The interval between 112 and 240 is divided into
8 equally spaced intervals and each bit represents one of the intervals.

4. The final vector is a concatenation of the vectors representing ks, e, . Therefore the input
vector is of length 60 + 60 + 8 = 128.

4.2.2 MODEL TRAINING

We use a deep learning model architecture (Figure [3] (a)) for our latency predictors. It is a 3 layer
feed-forward network with 400 neurons in the inner 2 layers and 1 neuron in the output representing

Hyper-parameter Possible Values

Learning rate (0.0001, 0.001, 0.01)
eoeoe ceee ® 00
Weight Decay (0.0001, 0.001, 0.01)
eoeoe veee ® 00
‘ 'Y X) P .‘ 128 Momentum (0.4, 0.6, 0.8, 0.9)
(a) Model configuration (b) Model parameter - search space

Figure 3: Latency Predictor

the latency prediction value. The architecture is similar to that used for the accuracy predictor by
OFA. The loss function is Root Mean Squared Error (RMSE) and each model is trained for 100
epochs with a batch size of 32. The data split is 70% training, 15% testing, and 15% validation.
There are three hyper-parameters used for training, namely: Learning Rate, Weight Decay and Mo-
mentum (Figure 3] (b)). During training, we perform hyper-parameter tuning using RayTune (Liaw
et al., 2018 [7]), which provides a distributed computation framework for machine learning model
development. We implement a grid search for each model hyper-parameter using Asynchronous
Successive Halving (ASHA) as our trial scheduler, ultimately training 36 different models at once
in a reasonable time frame. We train two groups of latency predictors. Hardware-specific models
that are trained directly on data from a single hardware, and Hardware-generalized models that are
fine-tuned to support multiple hardware platforms with little overhead to re-train as compared to
training from scratch.

4.2.3 FINE-TUNING

To achieve hardware generalization, where a latency predictor trained on a single hardware can
be made to predict for other kinds of hardware, we utilize fine-tuning (Han et al., 2015 [8]). Our
approach to fine-tuning is to assume that the lower layers of a latency predictor architecture are more
likely to learn general features that may apply to all types of hardware. This assumption may not
hold in cases of hardware where the latency distribution is significantly different from the original
hardware, such that the general features learnt from the initial layers do not hold true anymore.

To fine-tune, we freeze the first two layers of the model and train on a data set size of 700, a data set
size which is 80% smaller when compared to training from scratch. Justification for the fine-tune
data set size is provided in the experiments section 5.2 .

4.3 GPU LATENCY GENERALIZATION

Complete generalization on the basis of hardware can be understood as the ability of a model to
predict the latency of an architecture for a new hardware, without additional training. To achieve this
type of generalization, we would need to parametrize the hardware itself based on its configuration
so that a reasonable latency prediction can be made. Generalization across hardware such as CPUs,
GPUs and mobile hardware units is very difficult due to the fundamental differences they have in
their respective configurations.

Therefore, we focused only on the family of GPU hardware for generalization to show a proof of
concept that can be potentially extended for other hardware platforms. To choose the possible pa-
rameters that can be used to represent a GPU, we reviewed literature on GPU performance estimation
(Note: not in the context of NAS), and chose three widely cited parameters - Number of Cores, RAM
size and Memory Bandwidth. The input vector of the latency predictors is changed accordingly by
appending the numerical values of these three parameters, thereby increasing the length from 128
to 131. The assumption here is that parameters that affect GPU performance in computer programs
and games, can also explain the hardware related latency effects for a model in the NAS paradigm.

Model

| RMSE Loss abs.(ms) | RMSE Loss % (ms %) ||

Proxyless NAS
Latency Predictor - Note 10
Latency Predictor - RTX GPU
Latency Predictor - Tesla GPU

Latency Predictor - Intel Xeon CPU

0.75
0.325
0.385

1.18

14

1.02%
2.16%
2.5%
1.7%

Table 1: Test Loss for Latency Predictors

20
\

RMSE loss

— Training loss
Validation loss

Epochs

(a) Loss Curve

RMSE loss

—— Testing loss

1000 2000 3000 4000 5000 6000 7000 8000 9000
Dataset size

(b) Effect of training data set size

Figure 4: Latency Predictor model training

5 EXPERIMENTS

5.1 TEST LOSS OF PREDICTORS

We trained latency predictors for 4 different hardware - Samsung Galaxy Note 10, Intel Xeon CPU,
RTX 2080 Ti GPU, and Tesla P40 GPU. In addition to RMSE, we also considered RMSE % which
is RMSE/(avg. latency of models for a hardware), since the range of latencies across hardware
varied significantly. For example, CPUs have a range of 500-1000 ms whereas GPUs are usually
in the range of 20-50 ms. This metric would enable better comparison between different hardware.
As seen in Table [} the RMSE loss of our predictor performs either equal or superior to that of
ProxylessNAS. Figure [4| (a) shows an example of the convergence of the loss curve of a latency
predictor and Figure] (b) shows that the optimal training dataset size is 4000 when identifying the

”elbow” in the loss curve.

15.0 \
1251 \

10.0 4

RMSE loss

\
7.5
\

5.0 \

\ s Ale st At Lrtm,

0.0 4

—— Training loss
Validation loss

o 20 40 60
Epochs

(a) Loss Curve

80 100

RMSE loss

250 500 750 1000 1250 1500 1750

Dataset Size

(b) Effect of fine-tune data set size

Figure 5: Latency Predictor model fine-tuning

[HW to be fine-tuned for [Original Model RMSE (ms) | Fine-tuned Model RMSE(ms) ||

RTX GPU 0.385 0.712
Tesla P40 GPU 1.181 1.609
Intel Xeon CPU 14 171

Table 2: Test Loss for fine-tuned latency predictors (using Note10 base model)

[HW to be fine-tuned for | Original Model RMSE (ms) | Fine-tuned Model RMSE(ms) ||

Note 10 0.3525 7.45
Tesla P40 GPU 1.181 10.82
Intel Xeon CPU 14 313

Table 3: Test Loss for fine-tuned Latency Predictors (using RTX GPU base model)

5.2 TEST L0OSS OF FINE TUNING

We took a fully trained Notel0 latency predictor and fine-tuned it to see if it would generalize to
other hardware. As seen in Table[2] the RMSE from the hardware-specific models and a fine-tuned
models are comparable, specifically for the RTX and Tesla P40 GPUs.

It however does not work for the Intel Xeon CPU, where the RMSE loss of the fine-tuned model is
substantially larger. This is likely due to the range of latencies of the CPU (500-1000ms) which is
very different from the range of latencies of the Note10 (20-50ms), and therefore, freezing the first
two layers hampers the predictive performance.

Figure [5] (a) shows an example of the loss curve convergence for the fine-tuned latency predictor
of the RTX GPU (using the Note10 base model) and Figure [5]| (b) shows that the optimal fine-tune
dataset size is 700.

We wanted to see if performance for fine-tuning was dependent on the base model chosen. So we
also tried fine-tuning using the RTX GPU base model. As can be seen from Table 3] the RMSE
loss of the fine-tuned models is significantly higher than that of the original models. Therefore,
fine-tuning on the Note10 base model gave superior results as compared to using the RTX GPU base
model. This implies that the base model chosen does affect the performance of fine-tuning.

5.3 TIME TAKEN TO CREATE LOOKUP TABLE VS DATASET

The main goal of this work has been to see if generalization of latency prediction across hardware is
possible. We thought it would be prudent to also show a comparison of time taken to create a dataset
for training as compared to the overhead of creating a lookup table. This would provide insight of
how easy it is to create a latency predictor compared to a lookup table.

272243ms (4.54min) 16 1

250000

221479ms (3.69min)

| ‘1 { "" ‘U
\/‘W\PH W | Lﬁﬂ | V\

22066ms (0.37min) 1 —— Training loss

150000 4 | “ .l
126012ms (2.1min) 101 J ‘
100000 A

50000

Time taken (ms)
RMSE loss

@

o Validation loss
Lookup table 7000 dataset 4000 dataset 700 finetune

T T T T T T
0 20 40 60 80 100
Epochs

Figure 6: Time Overhead Figure 7: GPU generalized Loss curve

I Training type | Time Taken (s) |

Model Training 78
Model training (Hyperparameter tuning) 1660
Model Fine-tuning 11

Table 4: Model training time

To calculate the time taken to create a training dataset, we simply calculated the total latencies of all
the models in the training dataset (as we have to manually run a model to calculate the latency of
that model).

The lookup table is an enumeration of all the possible layers that a family of models can have along
with the latency of each of the layers. The time to create a lookup table was hence simply the sum
of all the latencies of all the possible layers. This is excluding any other time estimates which the
authors of OFA have not disclosed for lookup table creation. An assumption here is that it takes
significantly more time to create a lookup table, keeping in mind the time for manual enumeration
and/or time to create an automated program for lookup table creation in a YAML structure, as the
authors have provided.

As can be seen from Figure [6] the training dataset (optimal size is 4000) takes half the amount of
time to create compared to a lookup table, and the fine-tune dataset (optimal size is 700) takes 12x
lesser time.

5.4 MODEL TRAINING TIME

Table [] shows the amount of time it takes to train a latency predictor. As can be seen from the
table, it is quite small. A hyperparameter tuned model take 1660 s, because we are performing grid
search across 36 different types of models (as can be seen from Figure [3| (b)). Please do note that
the training has been done on laptop CPUs, so these are upper range values, if performed on a GPU,
the training time would be substantially lower.

5.5 TEST LOSS OF GENERALIZED GPU LATENCY PREDICTOR

To test the performance of the GPU generalized latency predictor described in section 4.3. The
training data set was composed of data from two different GPUs (RTX 2080 and Tesla P40) and was
trained on a data set of size 14000. As can be seen from Figure[7] the loss curve does not converge.
The RMSE loss comes to about 7-11ms.

We believe that the latency predictor is going into mode collapse and simply choosing the average
of the latency amongst the two hardware. This is likely occurring for two reasons, the first is that
the data set contains data only from two different types of GPUs. If instead it had data from a
multitude of different GPUs (of different configurations), the generalization could have been better.
The second reason is that parameters for the hardware in the input vector are numerical, while the
encoding for the architecture is one-hot. This dissonance could be causing some issues as well.

5.6 APPLICATION IN NEURAL ARCHITECTURE SEARCH

After training the latency predictors, we apply them to an existing NAS framework to evaluate per-
formance and the extensibility of model-based performance estimation for application in search. We
analyze the differences in search time and accuracy-latency trade-offs with our approach compared
with baseline approaches used in OFA and CompOFA. The goal here is not to claim that our ap-
proach performs better than other approaches but rather, we take an objective look at utilizing our
latency predictors in NAS applications. We hope that our approach at the least does not cause any
performance degradation in NAS. We realize that in the context of OFA, reducing search time does
not provide significant benefit in terms of reducing overall cost, as the bottleneck comes from the
training stage. We are simply evaluating an application of our latency estimation strategy in vari-
ous deployment scenarios and seeing how our latency generalization fairs as a tradeoff with model
accuracy, latency, and search time.

[Hardware | Latency Estimation Strategy | Inference Time (ms) |

Tesla P40 GPU RTX_OFA _model 0.564
Note10_OFA _model 0.544

Latency_Measurement 1195.303

RTX 2080 Ti GPU RTX_OFA _model 0.277
Note10_OFA _model 0.274

Latency_Measurement 706.820

Intel Xeon CPU RTX_OFA _model 6.236
Notel10_OFA_model 5977

Latency _Measurement 6807.215

Table 5: Inference time analysis of latency estimation strategies on 3 hardware platforms

To first get a sense of how long a single latency estimation takes, we compare inference times of
two trained latency predictors with the latency measurement method used in CompOFA (See Table
[B). We evaluate on three different hardware platforms including the Tesla P40 GPU, RTX 2080
Ti GPU, and Intel Xeon CPU. We notice that the inference time for a single forward pass on both
latency predictors is significantly faster as compare to latency _measurement.

In Appendix [A] Figures [§] (a) and (b), we perform NAS for Samsung Galaxy Note 10 using the
Fixed-Kernel (243 models) and Elastic-Kernel (10'° models) CompOFA search spaces. We search
for models in the Once-For-All network for 5 latency constraints: 15, 20, 25, 30, 35 ms comparing
3 latency estimation strategies including the lookup table, NotelO trained latency predictor, and
Notel0 latency predictor with memoization. Memoization was added as an additional component
to search in order to save progress on child architectures found. During the search, if we found an
architecture we have seen before, we simply lookup the corresponding latency estimate rather than
using the latency prediction model. This speeds up search time for smaller search spaces such as
Fixed-Kernel.

For the search, we use an evolutionary algorithm, defining a population size of 100 and number of
generations as 500. As seen in the figures, our notel0 model with memoization consistently, on
average, finds model architectures with higher Top-1 and Top-5 ImageNet accuracy than the other
two approaches and lower search time only in the case of Fixed-kernel. For Elastic-kernel, the
lookup table approach performs the fastest, albeit with less accurate models. We can attribute this to
the fact that memoization simply does not help as much for larger search spaces as it is less likely
that a model has been seen more than once during search. In this case, there is a tradeoff between
model accuracy and NAS search time. Our latency predictor just in itself, performs on-par.

In Appendix [A] Figures [8| (c) and (d), we perform the same experiment with the RTX 2080 Ti
GPU, comparing the latency measurement approach from CompOFA, the trained latency predictor
on the RTX GPU, and the fine-tuned RTX model using the Note10 base model. We can see that on
average, the fine-tuned model performs on-par with the other two approaches, exceeding them for
some latency constraints. Our goal here is to show that there is no performance degradation when
using our fine-tuned models. They perform similarly to baseline approaches for OFA NAS, keeping
in mind the offered benefits of reducing lookup table overhead and most importantly, hardware
generalization.

6 CONCLUSION

In this work, we have shown a framework for performing latency estimation using neural networks
for models belonging to the Once-For-All Neural Architecture Search paradigm. We have proposed
two hardware generalization strategies which include fine-tuning using a base model trained on a
specific hardware, and GPU-generalization which trains a model to generalize over different GPUs
by taking as input, GPU hardware parameters such as Number of Cores, RAM size, and Memory
Bandwidth.

We generate and test our latency predictors over a diverse set of hardware namely - Samsung Galaxy
Note 10, Intel Xeon CPU, RTX 2080 Ti GPU, and Tesla P40 GPU to test their applicability. We

10

show that our latency predictors achieve up to 50% lower RMSE as compared to that mentioned in
ProxylessNAS.

We also show that the fine-tuned models can achieve comparable results with hardware-specific
models, while being trained on datasets that are about 80% smaller than the training dataset size. We
therefore illustrate that fine-tuning, as a generalization strategy, significantly reduces the overhead
of lookup table creation and hence makes it an appealing approach for hardware generalization.
While our results for GPU generalization have significant room for improvement, it introduces a
methodology that can be used for future research and when larger and more diverse datasets are
available.

Finally, we applied our latency predictors to assess their performance in NAS applications and found
that both hardware-specific and hardware-generalized models perform on-par with other approaches
such as lookup tables and latency measurement and hence show that the use of the latency predictors
does not lead to any deterioration in overall performance.

[1] Cai H, Gan C, Wang T, Zhang Z, Han S. Once-for-all: Train one network and specialize it for
efficient deployment. arXiv preprint arXiv:1908.09791. 2019 Aug 26.

[2] Elsken T, Metzen JH, Hutter F. Neural Architecture Search. In Journal of Machine Learning
Research, 2019.

[3] Cai H, Zhu L, Han S. Proxylessnas: Direct neural architecture search on target task and hardware.
arXiv preprint arXiv:1812.00332. 2018 Dec 2.

[4] Wang Q, Chu X. GPGPU performance estimation with core and memory frequency scaling.
IEEE Transactions on Parallel and Distributed Systems. 2020 Jun 24;31(12):2865-81.

[5] Parakh AK, Balakrishnan M, Paul K. Performance estimation of GPUs with cache. In 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum 2012
May 21 (pp. 2384-2393). IEEE.

[6] Issa J, Figueira S. A performance estimation model for gpu-based systems. In 2012 2nd Inter-
national Conference on Advances in Computational Tools for Engineering Applications (ACTEA)
2012 Dec 12 (pp. 279-283). IEEE.

[7] Liaw Richard, Liang Eric, Nishihara Robert, Moritz Philipp, Gonzalez E. Joseph, Stoica Ion.
Tune: A Research Platform for Distributed Model Selection and Training. In ICML AutoML Work-
shop, 2018.

[8] Han Song, Pool Jeff, Tran John, Dally J. William. Learning both Weights and Connections for
Efficient Neural Networks. In NIPS, 2015.

11

http://arxiv.org/abs/1908.09791
http://arxiv.org/abs/1812.00332

A LATENCY PREDICTORS FOR ONCE-FOR-ALL NAS

Latency Estimation Strategy

Lookup_Table

Model_note10_ofa

Model_Memo_note10_ofa

—®~ Lookup_Table

Latency Estimation Strategy

915

M5
-7 =
g £ wo
> z
Search Time (s) © 7% C o35
5 S
S S
90.728 g < 930
- 1
175.026
kS }9 925
5 @
50.263 24, 2 %20
S [
& =3
S @
E E

—*— Model_Memo
=+ Model

91.0

~® Lookup_Table
=4 Model_Memo
=+ Model

15 2 > 0 5 15 P
notel0 Latency (ms)

(a) Samsung Galaxy Note10 using Fixed-Kernel CompOFA

T

2'5 30 3‘5

notel0 Latency (ms)

Lookup_Table

Model_note10_ofa

Model_Memo_note10_ofa

%5
g 2
z z o
Search Time (s) © @©
3 3
o 76 o 93
105.406 < P-4
2 &
223.747
e 2 %
" ”
173.940 2 2
%‘ 74 -~ Lookup_Table %" 91
£ =4 Model_Memo £

=+ Model

T T T T 90 = T

—®- Lookup_Table
—4— Model_Memo
=+ Model

15 20 2‘5 30 35 15 20
notel0 Latency (ms)

(b) Samsung Galaxy Note10 using Elastic-Kernel CompOFA

235 30 35

notel0 Latency (ms)

Latency Estimation Strategy

Latency Measurement

Model_RTX_OFA

RTX_OFA_FineTuned
(Note10 Base)

—®- Latency Measure
—4— RTX_Model
=+ Finetuned

e %5
g g
>4 > M4
Search Time (s) ® @
372 + 3
202.698 & 3 %3
o 7o { o
57.549 S 6811 & w2
8 i 8
57.574 Z 766 : z
% 64 I —®- Latency_Measure 4 941
g K —— RTX_Model E
76.2 1 =+ Finetuned .0
15 20 b 30 15

RTX_2080_Ti_GPU Latency (ms)

(c) RTX 2080 Ti GPU using Fixed-Kernel CompOFA

20 P 30
RTX_2080_Ti_GPU Latency (ms)

Latency Estimation Strategy

Latency Measurement

Model_RTX_OFA

RTX_OFA_FineTuned
(Note10 Base)

—_ #\ —
* !\ 2
< N s
z \ >
Search Time (s)] \\ @
2 \ 3
>=8hrs I " &
by \ W
147.107 g \ 3
\ =
5 K o
139.161 = \ s
& ben -
@ A ©
£ =+ RTX Model | E
- =+ Finetuned

=4 RTX_Model
=+ Finetuned

T T T T T T

15 20 b3 30 35 15 20
RTX_2080_Ti_GPU Latency (ms)

(d) RTX 2080 Ti GPU using Elastic-Kernel CompOFA

T T T

3 30 33

RTX_2080_Ti_GPU Latency (ms)

Figure 8: NAS experiment results for search time, accuracy, and latency

12

	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Latency Estimation for NAS
	3.2 Generalized Latency Estimation across Hardware
	3.2.1 Capturing the Effect of Model Architecture on Latency
	3.2.2 Parametrization of Hardware

	4 Latency Performance Estimation
	4.1 Dataset Creation
	4.1.1 Architecture Search Spaces
	4.1.2 Latency on Hardware Platforms

	4.2 Model Creation
	4.2.1 Vectorization
	4.2.2 Model Training
	4.2.3 Fine-Tuning

	4.3 GPU Latency Generalization

	5 Experiments
	5.1 Test Loss of Predictors
	5.2 Test Loss of Fine tuning
	5.3 Time Taken to Create Lookup Table vs Dataset
	5.4 Model training time
	5.5 Test Loss of Generalized GPU latency predictor
	5.6 Application in Neural Architecture Search

	6 Conclusion
	A Latency Predictors for Once-For-All NAS

